Machine Learning & AI Mastery Program

  • Learn the core concepts of Machine Learning, Deep Learning, and AI, including supervised, unsupervised, and reinforcement learning.
  • Build a strong foundation in math and statistics — linear algebra, probability, and optimization for model development.
  • Gain hands-on experience in data preprocessing, feature engineering, and model evaluation using Python and popular ML libraries.
  • Master advanced algorithms for regression, classification, clustering, and dimensionality reduction with real-world datasets.
  • Explore Deep Learning architectures (CNN, RNN, LSTM, Transformers, GANs) using TensorFlow, Keras, and PyTorch.
  • Implement end-to-end ML projects with MLOps, Docker, Flask APIs, and cloud deployment (AWS, GCP, Azure)

Course Curriculum

Module 1. Introduction to Machine Learning
  • What is ML? Difference between AI, ML, and DL
  • Types of ML: Supervised, Unsupervised, Semi-supervised, Reinforcement Learning
  • Real-world applications
  • ML workflow
Module 2. Mathematical & Statistical Foundations
  • Linear algebra fundamentals
  • Probability & statistics
  • Calculus & optimization techniques
Module 3. Data Preprocessing & Feature Engineering
  • Data collection & cleaning
  • Handling missing values & outliers
  • Encoding categorical data
  • Feature scaling
  • Feature selection techniques
  • Dimensionality reduction
Module 4. Exploratory Data Analysis (EDA)
  • Data visualization techniques
  • Correlation & covariance analysis
  • Distribution analysis
  • Handling imbalanced datasets
Module 5. Supervised Learning
  • Regression algorithms
  • Classification algorithms
  • Ensemble learning techniques
Module 6. Model Evaluation & Validation
  • Train-test split & cross-validation
  • Bias-variance tradeoff
  • Regression & classification metrics
  • Confusion matrix & ROC
Module 7. Unsupervised Learning
  • Clustering algorithms
  • Dimensionality reduction techniques
  • Anomaly detection
  • Association rule learning
Module 8. Feature Engineering for Real-world Data
  • Text data processing
  • Image data preprocessing
  • Time series feature engineering
Module 9. Advanced ML Topics
  • Explainable AI (SHAP, LIME)
  • Handling imbalanced data
  • Transfer & semi-supervised learning
  • Online & incremental learning
Module 10. Deep Learning (Basics)
  • Neural networks fundamentals
  • Activation functions
  • Backpropagation
  • Deep learning frameworks
Module 11. Deep Learning (Advanced)
  • CNNs for computer vision
  • RNN, LSTM, GRU
  • Transformers & attention models
  • Autoencoders & GANs
Module 12. Time Series Analysis
  • Time series fundamentals
  • ARIMA & SARIMA
  • Prophet
  • LSTM for forecasting
Module 13. Reinforcement Learning
  • Markov Decision Processes
  • Q-Learning
  • Deep Q Networks
  • Industry use cases
Module 14. Deployment & MLOps
  • Model serialization
  • Building ML APIs
  • Docker & containerization
  • Experiment tracking
  • CI/CD for ML
  • Cloud deployment
  • Model monitoring & retraining
Module 15. Domain Applications
  • BFSI use cases
  • Healthcare applications
  • Retail analytics
  • Manufacturing intelligence
  • Cybersecurity applications
Module 16. Capstone Projects
  • Customer churn prediction
  • House price prediction
  • Recommendation systems
  • Handwritten digit recognition
  • Stock price forecasting
  • Fraud detection project
Author Images
Mentor : Srikanth K
Mission: “To make Data Science and AI learning practical, accessible, and career-driven for every learner.”

With over 10 years of diverse experience in software development and technical training, Srikanth is a passionate educator specializing in Python programming, Machine Learning, Deep Learning, NLP, and Data Analytics.

His expertise lies in simplifying complex AI/ML concepts through practical demonstrations and hands-on projects, helping learners bridge the gap between theory and industry application. He has trained hundreds of professionals and students in data-driven technologies, empowering them to build real-world AI and data solutions.

Course Rating

5.00 average rating based on 7 rating

5.0
(7 Review)
5
7
4
0
4
0
4
0
4
0

Reviews

Comment Images
Haley Bennet
Oct 10, 2024

Lorem ipsum dolor sit amet, consectetur adipisicing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Comment Images
Simon Baker
Oct 10, 2024

Lorem ipsum dolor sit amet, consectetur adipisicing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Comment Images
Richard Gere
Oct 10, 2024

Lorem ipsum dolor sit amet, consectetur adipisicing elit sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Write a Review

Rating Here